
cd

j

?

“i

NATIONALADVISORYCOMMITTEE
FOR AERONAUTICS

TECHNICAL NOTE 3346

PREDICTION OF DOWNVifASH BEHIND SWEPT-WING AIRPLANES

AT SUBSONIC SPEED

By John DeYoung and Walter H. Barling} Jr.

Ames Aeronautical Laboratory,
Moff ettField, Calif.

Washin@on

January 1955

AFM2C
HPW.L LXHWL

MI 2811



TECH LIBRARY KAFB, NM

lU

NATIONAL ADVISORY cowm FOR AEiONA~I( Illllllllllllll[llllllllillllllll‘-
tiObbU77

—

TECHNICAL NOTE 3346
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PREDICTION OF DOWNWASH BEHIND SWEPT-WING AIRPLANES

AT SUBSONIC SPEED

Hy John DeYoung and Walter H.

SUMMARY

Barling, Jr.

A rapid method for estimating the downwash behind swept-wing air-
planes is presented. The basic assumption is that of a flat horizontal
sheet of vortices trailing behind the wing. The integrations for the
downwash are handled in a manner similar to both MulthoppCs and
‘Weissinger’sapproximate integrations in their span-loading calculations.
The principal effects of rolling-up of the wake are treated as correc-
tions to the flat-sheet wake. A simple approximate correction for the

“d effect of the fuselage is applied. The agreement with available experi-
mental data taken behind airplane models is good. Computing forms are
included together with charts of pertinent

“d simple direct application.

INTRODUCTION

functions, so as to enable —

—

The downwash induced by a lifting wing has, in the past, been pre-
dictedby considering the wing as a lifting line with a vortex sheet
trailing aft of the wing in a horizontal plane. It was assumed that
spanwise distribution of vorticity did not change with downstream posi-
tion and that the sheet did not roll up behind the wing. With these
assumptions, a procedure for determining downwash is given in refer-
ences 1 and 2. In references 1 and 2, the wing span loading is approxi-
mated by several horseshoe vortices. The total dowuwash is the sum of
the downwashes of the horseshoe vortices. It is apparent that such a
procedure can be extended to swept wings by using swept horseshoe vor-

.-

tices. The arithmetic of this procedure is, however, rather tedious
—

and laborious. In reference 3, a more rapid method in the form of an
influence-coefficientapproach is presented for the downwasl at the
center of the wake. References 1 and 2 also investigated the limitations
of representing the 13fting surface by a lifting line, and of the effects
of the rolling-up of the trailing sheet. It was concluded that both
effects were negligible for the then conventional airplane configurations. —

*
At the present time, the use of low-aspect-ratio plan forms and

occasionally of further rearward pasitions of the tail has made neces-
? sary a re-examination of the assumption that the trailing vortex sheet
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can be considered nonrolling-up. An analysis of the rolling-up process
is given in reference 4 which reveals that the trailing sheet becomes
rolled-up at shorter distsnces behind the wing as (1) aspect ratio
decreases, (2) lift coefficient Increases, and (3) span loading increases
outboard and decreases inboard. It is apparent that the downwash fields
determined on the assumption of the flat trailing vortex sheet or a com-
pletely rolled-up sheet (the simplified cases) omit wings of aspect
ratio of about two to four at moderate or high CLtS.

The purposes of this report are, (1) to make available an influence-
coefficient type of method of computing the downwash behind swept wings
having arbitrary spanwise loading, a procedure that will be quicker and
simpler to use than methods summing up the downwash due to elemental
horseshoe vortices, (2) to estimate the principal changes in the down-
wash field due to the rolling-up process, and (3) to suggest a simple
first approximation to the downwash at the tail due to a fuselage. The
effect upon the downwash field due to substituting a lifting line for
surface loading will also be investigated and an approximate method for
taking this effect into account will be presented for wings of low aspect
ratio.
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PRINCIPAL NOTATION

&
aspect ratio, ~

influence coefficients for a swept load line plus a swept trail-
ing vortex sheet
(These coefficients act as integration factors of the wing load-
ing at station n to obtain downwash at position (T,v,O).)

influence coefficients, similar to asn, but for only an unswept
trailing vortex sheet (no bound vortex)

wing span measured perpendicular to the plane of symmetry, ft

local wing chord measured parallel to the plane of symmetry, ft

average wing chord, % ft
b

f’ c2dq
mean aerodynamic chordj

[;C d~

local lift coefficient, local lift
qc
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lift
wing lift coefficient, —C@

lift-curve slope, per radian or per deg

integration factor for interpolating downwash
direction

empirical relationogiving the effect of sweep
f =1-0.0075 (Am + 7°)

rc
strength factor of the tip vorticesj —

r(~ =0)

strength factor denoting loss of vorticity of
at span station n

spanwise loading coefficient or dimensionless

L or Lting quarter-chord line> Cz ~ ~V

G(v) at span station q = cos &

spanwi.seloading coefficient for unit

~Gn where
CL

n refers to the span

free-stream Mach number

in the vertical

upon the rolling-upj

the trailing sheet

circulation along

station q = cos
u

free-stream dynamic

radius of fuselage,

wing area, sq ft

pressure, lb/sq ft

ft

free-stream velocity, ft/sec

downwash, positive downward, ft/sec

right-hand Cartesian coordinate system with x positive down-
stream and y positive to the starboard with the origin at
the apex of the wing quarter-chord Hne (See fig. 1.)

vertical distance in wing semispans measured from extended chord
plane, psitive upward

hcl.ination of wing from zero-lift attitude, deg
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line at trailing edge relative to free stream, deg

circulation, ft2/sec

angle of downwash, positive downward, radians or deg

sweep angle of
back, deg

()tan Atin-l —
P’

the wing

deg

taper ratio,
tip chord

root chord

quarter-chord line, positive for sweep-

coordinates, —
b;2’ b%’ b%

E.c longitudinal position at which sheet is essentially rolled-up
into wing tip vortices

Tc
Yc

lateral position of center of wing-tip vortex, —
b~c

T dimensionless longitudinal coordinate, measured from the lifting
line (~ - T tan A)

T trigonometric spanwise coordinate (cos-l q), radians

Q height above trailing sheet, ~ - ~6

n= height above wing tip vortices, ~ - cc

Subscripts

S.v

c

f

n,v

s

TE

average

tip vortices

fuselage

integers corresponding to span stations givenby q = Cos =J
8

or ~ = cos ~ (For n or v = 1, 2, 3, or 4; qv or qn = 6.9239,

0.7071, 0.3827, or o.)

pertaining to downwash at the sheet or displacement of the sheet

wing trailing edge
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F3YSICAL PROBLEM AND BASIC ASSUMPTIONS

5

The physical picture is one of a lifting surface shedding a trail-
ing sheet of vortices. As the trailing vortices are left farther behind
the wing, ~he sheet of vortices is displaced downward in varying amounts
depending upon the span station considered, that is, it assumes a curved
shape. While this displacement is going on, the vorticity in the sheet
is continually shifting from the sheet toward the tips or edges of the
sheet. The lifting surface and the trailing vortex sheet sre inclined
with respect to the free-stream direction.

z

Sketch (a)

‘% The first assumption for the analysis will be that all of the chord-
wise lift is concentrated at the chordwise center of pressure which will

?
be taken as the wing quarter-chord line. Second, it till be assumed that
the flow on the ting is not separated. Third, it will be assumed that the
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.
downwash due to a symmetrical sheet can be approximated by a horizontal #
flat sheet passing through the symmetrical sheet at the lateral station
where the downwash is to be computed. It should be noted that at

Ir

v
Arbitrary shaped sheet

~ Substitute flat sheet

+’+
Sketch (b)

the horizontal flat sheet is.given a
some allowance is made for the shape

different vertical
of the sheet.

each q station,
location and thus
Fourth, it will be assumed that the vertical-longitudinalinclination of
the system has no effect upon the downwash. Hence, the real system will
be approximated by a horizontal flat system passing through the real t

system at the downstream station, x, at which downwash is to be computed,
as is shown below. The coordinates ot the real and substitute systems

o

Sketch (c)

are shown in figure 1. It should be noted that these four assumptions
are ideriticalwith those made by Silverstein and Katzoff in references
and 2. The first two asswptions are comuon in aerodynamics and the
limitations are fairly well known for the higher aspect ratios. The
first assumption will nowbe further investigated for wings of fairly
low aspect ratio.

1

Two wings having taper ratios of O and 1.0, aspect ratio equal to
2.o, and sweep angle of 56° were investigated. Each wing was assigned
both cotangent--typechord loading and uniform chord loading. The span
wise loadings were obtained from reference 5. For each wing and chord- *
wise loading, the downwash in the wake> 66> was computed tith each of
three alternative approximations;namely, the chordwise loading was
replaced, respectively, by a single lifting line, by three lifting lines> ‘d
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L. and by five lifting lines. The strength and chordtise positions of the
lifting lines were set by dividing the chord into equal segments and
finding the lift and center of lift of each segment. Each lifting line-d
was treated as a flat, horizontal vortex system in the Q = O plane.
The downwash angles of the lifting-line systems were added and the sums
are plotted in figure 2 for four spanwise stations.

Figure 2 indicates that the single lifting line does not give
accurate downwash predictions just aft of the trailing edge of the wing.
The downwash fields for the wings of equal A are essentially the same
one mean chord (one semispan) aft of the wing trailing edge. This con-
currence at one mean wing chord aft agrees with the two-dtiensional
example of reference 1. For cotangent chord loading, the five-lifting-
line method very nearly predicts ~/a equal to unity at the wing trail-
ing edge. This can be considered as a check to the approximation since
the flat-plate downwash must be equal to a at the trailing edge.
Examination of figure 2 shows that the curve of downwash obtained by
using one lifting line is translated forward a nearly constant longitu-
dinal distance from the curve of downwash obtained by using five lifting
lines. In figure 2(a), this distance is one eighth the mean wing chord.

-
In reference (1), contours of downwash angles due to a two-

dimensional Clark Y airfoil section are compared to contours of down-
4 wash angles computed for a ltiting line at the c/4 point. If the lift-

ing line is shifted back to the(3/8)c point, the shifted field agrees
well with that of the airfoil section even very near the trailing edge.
From this, it would appear that the downwash field due to surface loading
might be well approximated for all wings by using a single lifting line
with all longitudinal distances reduced by (1/8)cav, or replacing T by
T - (1/4)(cb)av= It should be noted that this correction is of signifi-
cance only in vicinity of the trailing edge.

The third assumption has been considered by comparing the results
obtained by using the assumption against results calculated for an ellip-
tically shaped sheet whose ratio of minor to major sxes was 0.4. At

l-l= O, 0.383, and 0.707, the difference of the results was less than the
differences found in the examination of the first assumption. At
l-l= 0.924, use of the shove third assumption did not compare well with
the results for the elliptically shaped sheet. However, at low angles
of attack, since the distortion of the sheet is small the downwash can
still be computed at q = 0.924. The fourth assumption has been checked
by numerical computation for a @o sweptback wing of aspect ratio equal
to 3.5. It was found that provided that e of the noninclined system
is taken as w/V rather than tan-l(w/V), the difference between the
downwashes was less than the differences noted in examination of the
first assumption. This appears to hold true up to about a = 20°.
Thus, throughout this report, e will be taken as w/V and the subject

● is thus treated as if only small angles were involved.
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It should also be noted that these four assumptions are commonly
used in th:=calculation of wing span loading. As a result, the ‘fnon-
rolling-up system can be treated in a manner analogous to Multhoppts
(ref. 5) or Weissinger’s (given in ref. 6) approximate integrations in
their calculations of span loading. However, a principal problem not
encountered in span-loading work is the downwash at arbitrary vertical
locations.

Generally, the amount of rolling-up present is so small that the
foregoing assumptions are sufficient for good answers. However, as
CL/A increases, an increasing smount of rolling-up appears and a cor-
rection must be made for this effect. The principal features of a
trailing-vortex system where the rolling-up is conspicuous are, (1) the
vorticity becomes vertically displaced and shifts outboard from the
plane of symmetry, and (2) the wing tip vortices trail back approximately
in a horizontal plane which is parallel to the free stresm. The center
of the sheet, however,-is still displaced downward. As the vortex sheet
is left farther behind the wing, the tips of the sheet rolJ up and form
concentrated tip vortices. An outward motion of the vorticity in the
sheet between the tip vortices results in less vorticity in the mid-
semispan regions. These two changes in vorticity configuration can (in
the main) be taken into account by making a fifth assumption, (1) a

d

vertically displaced trailing flat sheet having a reduced amount of
—

vorticity, and (2) a pair of tip vortices which ‘liein a horizontal plane u
and whose strength is drawn from the sheet. With this arrangement, the
sheet can be handled in much the same fashion as the flat sheet, that
is, by using the first four assumptions. The tip vortices can then be
handled as a separate computation.

Tip vortex-

L Weakened flat sheet 1
Real vortex sheet

Sketch (d)

At various distances behind the wing, the rolling-up is in various
stages of development. To obtain an accurate approximation, one should

lNohrolling-up system assumes that the trailing vortex sheet has r

the same lateral distribution of vorticity at all distances behind the
wing as at the wing trailing edge. However, it need not be flat although .,
for determining downwash it is assumed flat. t
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consider the tratlhg syEtem in longitudinal segments, each segment
having a different smount of rolling-up. The downwash would then be the
sum of the downwashes of all the segnents. However, this involves an
exorbitant smount of work and to obtain a practical solution, a sixth
assumption will be made. It willbe assumed that the entire trailing
system behind the wing is of one form, nsmely, the form which the real
system has at the selected downstream location ~. The substitute
rolling-up system is then pictured as shown in sketch (e).

This sixth assumption was examined by numerical computations for a 60°
sweptback wing of A = 3.5 using the segment approximation. It was found
that the results of the use of this assumption were within the accuracy
of the theory for this case.

While the foregoing assumptions aid in simplifying the physical
picture, additional itiormation is necessary in order to calculate the
effect of the rolling-up process. The relative strengths of the vortex
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sheet as well as the,tip vortex and also the po~itio.nOf the tiP vortex
for various distances behind.the tiw Wst be..obtained. From an an~Ysis
of the downwash behind a series of swept-wing plan forms obtained from
large-scale wind-tunnel data, an empirical relationship was developed
giving the approximate lateral position of the tip vortex. From this, a
method is developed for obtaining the relative strengths of the tip vortex
and flat sheet.

As will be shown in the text, the use of such a simplified substi-
tute system enables one to express the down~sh due to a rolling-up
system as being the flat-sheet results plus an additive correction
(generally, fairly small) which, for the case checked, predicted the
downwash well and goes to the right limit as the rolling-up %ecomes
complete.

ANALYSIS AND DEVELOFhfENTOF METHOD

The first part of the analysis is concerned with the flat-sheet
procedure, that is, evaluating the downwash using the first four assump-
tions. The location of the wake relative to the tail will be considered
and some assessment of the effects of the fuselage upon the downwash is
to be made. In the second part of the analysis, the rolling-up of the
trailing vortex sheet is considered.

Flat-Sheet Procedure

General calculation of downwash.- The d~wnwash at a point (x,y,z)
due to a swept-vortex system (assumed for the-present at zs = o) is
equal to the sum of that due to the swept-load vortex (or bound vortex)
and that due to the trailing vortex sheet.

u

-ii-

“8
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Sketch (f)

The induced velocity due to
extending to infinity downstream
(ref. 7).

dw = & (Cos

an arbitrary elemental trailing vortex
(see sketch (f)) is given by Glauert

01 + Cos Q C-OS.Wt (1)

where (32+0. The vertical induced velocity at (x,y,z) due to the
small element ds of the load vortex (see sketch (g)) is givenby

rh ds COS $b
dw =

4Yrr3
(2)
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Sketch (g)

The total downwash due to the entire vortex system is equal to the
integration over the wing span of the sum of equations (1) and (2) (which
are converted to rectangular coordinates by the relations indicated i.n
the respective sketches). Further, the integral of equation (2) is integ-
rated by parts such that the new integrand contains the factor d~/dij.
Then in terms of dimensionless relations, the total downwash can be
written as:

w 1

f

1 (?-fi)G’(fi)dfl 1 1-=-
V7T ‘% J Ls~ Gf(r))dij

-~ Q= + (q-fi)= -1
(3)



where for ii~0,

( )(v-t) [~+ (lv1-161)~Al [T+ (lnl-~)tanAl ~A-~-lvl~2A-7tanA

r12+ (~-fi)2 [T+ (lul-v)t~A]2+Q2/(COS2A) _ ~-ti
L~P =

+/[T+ (lql-lfil)tiA]2+ (V- fi)2+02 Q2 + (q -q)2

(4)

and for ij< 0,

(
(T-fi)[7+(ln\-lll)tanA] [’r+(lVl+n)tanA] &

)
‘~+lqltan2A+~tanA

n2+ (q-lj)2 - [T+ (!vl+n)*A]2 -t fi2/(COS2ii)
L~P = +

~[T+ (1~1-l~l)&mA]2 + (~ - 1)2 +Q2

[T + ( ]T)l-~)tan A]2 + f12/(cos%) [T + (Iql +V)tan A]2+Q2/(COS2A)

~(7+ lqltanA)2+q2+Q2

V -i

i22 + (q - fi)z
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of eqution (3) are, in general, difficult to inte-
means. The numerical integration method used herein
both Multhopp and Weissinger. In fact,equation (3)

appears in reference 6 for the case of $2=0. As was done in refer-
ence 6, the downwash integrals can be written as a summation of products
of mathematical coefficients, ~sn (a~n in refs. 3 and 6), and the span-
wise loading, Kn= (CZC/CL Ca~) .

7

As is shown in Appendix A, the numeri-
cal integration of equation (3 can be put into the form (using a fowr-
term expression)

A

T? CL -
E =—= — I a6nKn

v 2A
(6)

n=l

where for n =-1, 2, 3, and k, the Knfs correspond to values of
C~C/cLCa~ at ~ = 0.924, 0.707, CI.383,and O, respectively. The asnls,
like the LSP in equation (3), are solely dependent, for a given sweep
angle, upon the locatio~ of a ~int (T,~,s2). Thus, after the asnts
have been evaluated, one may compute the downwash using any desired span
loading. To facilitate computations, the asn’S (from general equations
of Appendix A) have been computedfor ~ints at q = O, 0.383, 0.707, and
0.924 iying behind the quarter-chord line and for two verticsl locations
relative to the vortex sheet, O =0 and”Q =*0.7, that is, at the sheet
and one-half semispan above or below the sheet. The computed values have
been plotted in figures 3 and 4. Thus, given a plan form, span loading,
and the desired longitudinal position, one obtains values of asn from
figures 3 and 4 and applies equation (6) to obtain the downwash.

It is obvious that the accuracy of a summation depends upon how many
terms are considered. For the four-term sum&tion used herein, accept-
ably accurate answers are obtained in most cases without an unreasonable
expenditure of labor. However, for cases in which the spanwise loading
differs from that expressible by a four-term sine series, the four-term
summation may not be acceptably accurate as it would tend to gloss over
such changes in span loading. The derivation of the asnls in Appen-
dix A has been leftin a fairly general form so as to allow the reader
to compute the asnts for summations involving more points across the
span.

Choice of vertical coordinates.- T&ee possible vertical coordinates
are the parameters. Q, ~, and Z. The vertical position of the downwash
point for.these three is measured respectively from (1) the trailing
sheet, (2) a horizontal plane (parallel to free stresm) through the apex
of the load line, and (3) the extended chord plane. Each has some advan-
tages. With Q, the downwash field is symmetric about the value Q = O
(for a flat sheet), or about the trailing sheet. Also, computations are
simplified with this parameter aad the downwash varies linearly with CL.
On the other hand, with ~, the downwash field is referred to a fixed
coordinate system, independent of angle of a~tack and sheet position.
With Z, the downwash field is referred to the coordinate system (extended “_
chord phne) of the airplane but is dependent on angle of attack. Thus,
with Z, the downwash field is described relative to the tail plane.
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(7)

=~+(T+qtan A)tana
J

When the downwash has been computed for various O1s and the dis-
placements, C~(rI),have been evaluated, the field can be plotted against
a choice of Q, [, or Z.

Lateral interpolation of downwash.- The a~n values of figures 3
and 4 allow a direct evaluation of downwash at four span stations. some-
times it is of value to know the downwash at other span positions or to
plot a more accurate lateral variation of downwash. For these purposes
a lateral interpolation formula is convenient.

The product e(p) sin ~ can be expanded in a Fourier series, the
< coefficients of which can be numerically evaluated in terms of the four

“d

known values of en. Then (for symmetric distribution of downwash)

7 7

I
Y

En sin qln
e(q)sin ~ = sin vl~ 1. sin P=qn (8)

~l=l,odd

where (p= Cos-l
expressed as the
known downwash.

L 4

n=z

T* Then the downwash at a given ~
sum of products of tabulated numbers
‘IhLls

position can be
and values of the

(9)

where the H’s are tabulated in table I for q = 0.098} 0.195, 0.290~
0.556, 0.831, and 0.981, and En are the known values of downwash at

n = 0.924, 0.707, 0.383, and O.

Examination of table I shows that in the range of v from O through
0.556, HL is very small, less than 4.5 percent of the sum of Hz, H3Y
and HA. For this range of q, one can simplify the
letting El = 62, then equation (9) reduces to, for

This method of inter~lation, in effect, puts

calculations by
o ~ q ~o.m,

(lo)

a curve of the form
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(where the e’s are constants) through the k=nownvalues of e at the ?

four regul~ span stations. Of course, equation (10) goes through only
three of the four known values.

..

The lateral interpolation formula applies
arbitrary ~(~) curve (e.g., at constant g “or

Vertical interpolation of downwash.- The
and 4 allow a direct evaluation of downwash at
present asn charts for many Cl values is too

--.- —— ii’—
for a given Q along an
at a constant T).

=

a~n values of figures 3
Q= O and tO.5. To
cumbersome. However,

with only two values of Q available, an interpolation procedure is a
prime necessity.

Reference 8 presents a simple.method in which downwash~ for small O)
is expressed as a Taylor series of IS-l!. Reference 7 contains a simple
equation of downwash as a function of Q for large Q values. With
these functions of Q and the computed value of downwash at $2= t0.5j
a fitted function of !2 is developed in Appendix B that approaches the
correct ~unctions at low and high values of” 0 and fairs through the
computed value at Q = *0.5. .-

.
9=

The vertical interpolation function is given as
_.

(11)
3

n=l

where Cl, C=, and ~ are tabulated in table II for several N values;
E(T~V~O) and e(T}rI~*l/2)are the values of downwash compiztedby equa-
tion (6) at o = 0, and kl/2, respectively.

Vertical displacement of the sheet.- The vertical displacement of
the sheet is given by the integration in the longitudinal direction (for
constant q) of the downwash in the sheet from the wing trailing edge to
the r and ~ position of the downwash point. Thus, for a given ?_II

—

(12)

where ~s is the vertical displacement of-the sheet~ TT iS a d-
variable of integration, and ~T~ is the vertical displacement of the
wing trailing edge. Now Q is defined as ~ - ~s, then ~s(TT) in the
integrand corresponds to the value Q = O. With the flat-sheet assump-
tions, es (the downwash angle at the sheet, i.e., O = O) is independent
of any vertical parsmeter and can be integrated to evaluate KS(T).

●
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h The integration in equation (12) can be simplified considerably by
approximating cs with an integrable function of TT. An analytical
study of figure 2 indicates that the downwash behind the surface-loaded

8 wing varies closely as l/#, also that the single-load-linemethod
underestimates the downwash near the ting. The simplicity of the 1/+
behavior suggests a very convenient curve-fitting function for downwash
that can in addition be made to correspond with the downwash near the
wing as predicted by surface-loadingmethods. Thus it will be assumed
that the downwash is given by the following function (Q = O, and using
the dunnnyvariable 7T)

E2
~s(TT) = E= +

(TT - j)2
(13)

where E=, E2, and j are undetermined
tion of El and E=, two conditions are

coefficients. For the determina-
given by

●

w

at TT = T~y ~#T) = ~

at T
T

=T, ‘S(TT) = ‘SY known downwash at the
position at which dis-
placement is to be
computed

(14)

With El and E2 determined it remains to evaluate j. Comparison of
the res{lts of–several values of j with the downwa;h fiel& given in
figure 2 shows that for j = c/Zb ‘very good “agreementis obtained even
with ~~ taken at a distance of two semispans aft of the wing trailing
edge.

With the value j = c/2b and the determined values of E= and E2,
eq~tion (13) becomes

E~(TT) =

[

~ c):(Tm c)2(T-i)2’s-(T~-:Y~+-—- _—
2b 2b

c-a’ (T~-:)2(M-“)
(’,-2)2 1 (15)

Inserting equation (15) into equation (12) evaluates the vertical
displacement.
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*

(16)

where es is computed at any T, q position but ~th Q . 0.

For a wing having an airfoil section such that the load line is at
the one-quarter chord and with ~ = a, equation (>6) simplifies to

q=-

[

(T+-q tanA)a -
(.-%) (T-:)(. es)+

(’+$) -

i

8

(
3c+qtanA

)( )]
tana-a

z
(17)

It should be noted that the last term of equation (17) is negligibly small
for many practical cases. .- .

Equation (16) expressed as vertical displacement of.the trailing
sheet or wake from the extended-chord plane-is given by (see eq. (7))

(’~-a (tina-“J
For a wing having an airfoil

at the one-quarter chord and for
section such that the lifting line is
~ = a, eipation (18) simplifies to

.i
*
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For many practical cases, the last term of equation (19) can be
neglected.

Correction for the Effect of the Rolling-Up of the Sheet

General analysis.- If the vorticity shed from the wing is now con-
sidered to make up a weakened sheet and two tip vortices, as discussed
earlier, then the correction, AG, to be added to the downwash calculated
in the foregoing sections can be written as

t’ where Cws is the downwash due to a weskened vortex sheet; cc is the
downwash due to a pair of tip vortices. The weakened sheet and the tip
vortices extend from a longitudinal position corres~nding to the
quarter-chord point of wing tip,downstream to infinity. The quantity,
‘TS> is the do~wash due to the portion of the flat sheet aft of the
quarter chord of the tip. Letting

As becomes

which gives Ae equal to the downwash due to the tip vortices minus the
downwash due to the loss of vortex strength in the trailing vortex sheet.

The downwash due to only a trailing sheet extending from the quarter
chord of the rearmost wing section can be deduced from equation (1) by
considering an unswept wing. Replacing ~ by (~ - tan A) then refers
the coordinates to the quarter chord of the wing tip. Following the
same mathematical procedures as in Appendix A, it is shown in Appendix C
that the downwash due to such a trailing sheet can be reduced to

s

,--w
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4
w CL
—=—

1
ad$l

(21)
V2A

n=l

The difference between ‘flat sheet and ‘weakened sheet) ‘T) can be con-

sidered as the loss of downwash due to the weakening of the sheet. This

weakening can be taken into account by multiplying Kn in equation (21)
—

by a term called a strength factor.

Thus, eq reduces to

4

n=z

where F=. will be called the strength factors

(22)

of the sheet and denotes
a loss o~--strengthin the trailing vortex sheet. Thus, 1-F

‘f
is the

proportion of vorticity left in the sheet. The a~~s are p otted as
a function.of (g - tanA)/f3 in figure (5). &

The downwash due to a pair of tip vortices is equivalent to the
downwash due to a trailing sheet behind a uniformly loaded wing of span ?“

%b~he%~’v%ices is
can be derived from the preceding work. The circ~ation —

FeCL/~cA Where Fc denotes the proportion of
—

wing vorticity in the tip vortices. Expressions for
—

cc~ A/FcCL are

derived in Appendix C and values are presented in figure ~. This param-

eter is plotted as a function of (1/13rI)(E - tan A) for various values
7of V/Tc and Qc/qc. me quantity, $lC vertical height relative to the

tip vortices), is equal to !-atan Aor O+~s-atin A, where
..

-a tan A is the vertical location of the tip vortex which will be pre-
sented shortly.

AS yet, Fsn ad F= have not been determined and, as was stated
earlier, one must determine the locations of the tip vortices before
proceeding to find the strength factors.

—

Location of tip vortices.- Reference 4 presents an approximate
(curve-fitting) equation for the lateral position of the tip vortices.
This equation is givenby

~c = 1- (1 - qcm) tanh(E:--’:or” (23)
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\ where

,r-
●

21

(24)

where V% = l/K4 and represents the asymptotic position of ~c, and go
indicates the start of the rolling-up proce-ss. In the last part of
Appendix C, 5C is reduced to the more convenient form

()(1 - IIc=)3/2 A

EC-EO=
~

(25)
0.7315 KI - 0.3959K= + 0.3030Ka - O.lti K4

It should be noted that equations (23) and (24) were derived for a wing
* having an unswept trailing edge.

h“ It has been found from experiment that, for a swept wing, the inward
movement of the tip vortices is much slower than is indicated by equa-
tion (23). The reasons for this slowness are not clear. However, the
lateral positions of the tip vortices appear to be strongly dependent
upon the sweep of the wing trailing edge.

The following two considered opinions of the actions of the air flow
behind such a wing are given here. First, in the region between the two
swept wing panels, the vortex sheet (principally near the plane of sym-
metry) is above both the load vortex of the wing and the wing tip vor-
tices and thus is subjected to an inward velocity component. This inward
velocity tends to keep the vorticity in the midspan region out of the tip
vortices and thereby increases the roll-up distance. A second action
concerns the wing tip. For a sweptback wing, an outward velocity over
the wing tips is generated due to the lateral pressure gradient resulting
from the staggering of wing sections. This flow over the wing tip is here
‘assumedthe primary action that results in a further outboard location of
the tip vortex relative to that of an unswept wing. Similar reasoning
leads to converse effects for sweptfo~d tings. The velocities involved
in the above phenomena are difficult to determine. A problem remains,
however, in that an expression for m. (compatible with ex~riment) must
be found.

-L--

The problem of theoretically determining qc
trailing edges is even more difficult than for an
fore, an empirical equation will be used herein.
that takes into account the effect of the initial

for a wing with swept
unswept wing. There-
One approximate method
outward lateral
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location of the tip vortices (due to the sweep) is to multiply (1 - %m) #
of equation (23) by

f+ (1/10)(~- tan A)

1+(1/10)(g - tan A)

where f .isa function of the sweep of the .yingtrailing edge. At
large values of ~.. tan A, this factor approaches unity and Vc
approaches l/K4. In the mj,dspanregion as mentioned previously, there
is an inward velocity imposed upon the trailing vortex sheet which results
in a longer roll-up distance. It is found that this can be taken into
account by multiplying the argument of tati in equation (23) by f2
where f..here is the same as the previous f for convenience of empiri-
cal evaluation. ‘The effect of this ?nultiplt&ationis to increase the -
roll-up distance by a factor of (l/f)s. Then assuming the tip vortex

&to start at the qu~ter chord of the wing ti~ (EO = tan A), equation (23)
becomes

—

.——
:.

—.—

.—

[

f+(l/10)(~ - tan A)
Vc = 1 -..

1+(1/10){~ - tan A)]@-Os’~~2(:::;Y’3] p

(26)

where ~c - tan A .1s givenby equation”(2’5)_for go = tan A.

Equation (26) can be solved for f, since, for small values of the
argmnent in tanh, the argument itself can be taken,. A cubic equation
results from which f can be determined from experimental measurements
of q . Five wings with sweep angles of the
-41.# to 51.9° were used in determining f.
experhnents, f is-given by,

f=l- 0.0075 (AO~ +

trailing edge ranging from
To the precision of the

..-

.-

70) (27) .—

It has been assumed that f is independent of aspect ratio. It
should be noted that f does not quite reach unity at AOTE = O. Thus —
equation (26) does.not quite reduce to equation.(23) for wings tith
unswept trailing edges. The difference, hotkwer, is small and is not —

considered important.
-—

a
2This is in contradistinctionfrom reference 4 which assumes the tip .—

vortex to start at the wing trailing edge. , ~ .–
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8
It should be realized that other expressions for qc can be

obtained. Since only the numerical value of Vc is important, the use

d of other expressions of q= will not affect the material following.
Later in the discussion section, it is shown that values of qc from
equation (26) compare well with the limited available experimental
results.

The vertical position of the tip vortices can be determined by using
the fifth assumption in the previous section. Then, since the tip vor-
tices are assumed to start at the quarter chord of the wing tip, the
vertical displacement of the two tip vortices is approximately given by
the vertical position of the quarter chord of the wing tip, or

It shouldbe noted that far behind the wing, after the rolling-up
process is essentially completed, the influence of one tip vortex on the
other causes a displacement that varies linearly with ~. The use of

s equation (28) therefore is restricted to locations near the wing.

Strength factors of the trailing sheet and wing tip vortices.- The
8 rolling-up trailing-vortex system is greatly simplified with the vortex

system divided into two parts, (1) a pair of rolled-up wing tip vortices,
and (2) a vortex sheet stretching laterally between the two wing tip vor-
tices (see sketch (d)). The problem is to determine what proportion of
the total vortex strength each should have. A method attributed to Lotz
and Fabricius in reference 4 (given originally in ref. 9) is readily
applicable for unswept wings. A modified and somewhat simplified pro-
cedure of this method is developed here for swept wings.

The basis of the method depends on two vortex laws applied to the
rolling-up trailing-vortex system extending downstream from each half of
the wing. These laws will apply aft of the quarter-chord point of the
rearmost wing section where the trailing system may be considered free
and two-dimensional. These laws are:

(1) The total vortex strength shed from each half of the wing is
invariant with distance downstream.

(2) The total lateral moment of the trailing vortices shed from each
half of the wing (or the total lift impulse) is invariant with distance
downstream.

Let Fs(q) denote a proportional loss of strength in the trailing
* vortex sheet, then 1 - Fs(q) is the proportion of strength remaining in

the sheet. Also let Fc denote the proportion of strength in the trail-
ing tip vortex.

w
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The vortex laws yield two results. First, since the total vorticity
is constant, the smount of vorticity in the tip vortices equals the total

$

amount lost by the sheet, or
.—

i=

ld”
Fc =

J[

K(q)

~ FS(TI) — 1dq = F8(0)

o K(o)

—

(29)

Second, the moment gained by the tip vortices equals that lost by the
sheet, or

.-—

Fc and
represent”
approxima-

Equations (29) and (30) are not sufficient to i@ermine
F~(q). However, the form of Fs(q) canbe selected so as to
the physical actions of therolling-up sheet to a reasonable
tion. In any rolling-up problem involving two main-vortices,””thevortex 8–
sheet in the outer span regions is acted on by the tip vortices more than —

by those in the inner regions. The outer vortex sheet ro~s up at a
faster rate than the inner. For these reasons the decrease of vorticity $

in the sheet, denoted by Fs(~) should become larger as. ~ becomes
larger. A simple expression for F8(v) which approximates these phenomena
is

FS(TI)=Fs(o) +Xr12 ( 31)

Fs(q) at ~ = cos ~ can be written as F8n, thus

Fsn = Fs4 + h cos2Pn (32)

where FS4 is evaluated by
evaluated by using equation

equation (29). The parameter, A, can be
(30). Thus :

F= = Fc

(33)

\
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The integral can be evaluated numerically by use of equation (C23) and
has the value

J’1q2 K(rI) K= K2 K
d~ = 0.1283 ~+ 0.1388 ~+0.0531~

o K(o) 4 4

Combining equations (32), (33), and (34) results in

[

(~cK4 - 1)COS2
():Fsn =Fc 1+

0.L283 K=+ 0.1388 K=+ 0.0531Ka
1

( 34)

( 35)

L -J

The strength factor of the wing tip vortices is assumed to be
dependent upon the wing loading distribution and the lateral position of
the tip vortices, qc. The latter gives a measure of the extent the sheet
is rolLed-up. Near the wing, the tip vortex would (at least) equal the

● ting circulation at q = TIC,the center of the tip vortex. At most, the
tip vortex would equal the wing circulation at the span station corre-
sponding to the inner edge of the tip vortex. The inner edge, here, is

i roughly estimated as twice the distance from the tip to q=, thus located
at 7=2qc -1.

Now, in the derivation of the sheet strength factors, some sheet
strength is left in these outer regions. Thereforej the strength of the
tip vortices will not be taken as the larger of the above two values
but will be taken as the sum of the vortices inboard to q

Thus (again, near li%l~which is midway between ~c and 2fic-1.

Far downstream, when the rolling-up is completed

Fc=l

(36)

(37)

Between the above asymptotic values, assume Fc to vary as the
product of wing loading at (3Tc-1)/2 and a linear function of TIC.

.
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37~-1

()
K~

FC = (k. +k~~c) (3)
K(o)

The two constants, kl and k=, are evaluated””bythe two conditions given
by equations (36) and (37). The resulting equation for Fc is

37C-1

()
K—

FC =
.2

K(o)

where
L

(1 - T@ ( 39)

-1

()K 3VC-1 Czc
is the value of —

311=-1

2
at q=—

CL Cav 2’

—
4“

K(3Y) cc1 37C -1
is the value of — at q = ~,

CL Cav. 2
)

and

1
Tcm ‘—

K(o)

It should be recognized that other procedures that might determine
the strength factors more accurately can be used-in the present calcula-
tions. However, it should be borne in mind that a fair amount of approxi-
mation in the strength factors can be tolerated since a small percentage
change in the factors results in an even smaller percentage change in the
computed downwash. In a later discussion, it is shown for an example
wing that experiment and the above theory compare well with regard to the
vortex strength in the tip region. The expressions preseqted also have
the merit of being computationally simple. .

Vertical location of the sheet during the rolling-up process.- When .

the sheet is rolling up, both the downwash induced at the sheet (Sl= O)
and the location of the sheet) ~s> will be different from the flat-sheet
resuits. As an approximation for the rollin&-up sheet, the downwash due u
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k to the rolling-up sheet is computed at $2= O using the <s value given
by the flat-sheet method. Substitution of this value of downwash in the
displacement equation evaluates the ~s for the rolling-up sheet. This

\ value of ~s is used throughout the balance of the rolling-up computa-
tion, replacing also the Es in the flat-sheet downwash; that is, Q
for the flat sheet is then the same as O for the rolling-up sheet.

The rolling-up correction procedure, including the recomputation of
!.s,is illustrated in a computing form to be presented shortly. The
change in location of the vortex sheet is generally quite small in the
inboard region, becoming larger in the outboard region.

Special loadings.- Span loadings which have maximum values at span
stations other than at the plane of symmetry cause the equations for the

. strength factors to break down and in some cases to predict the lateral
tip vortex location as being outboard of the wing tips. Such span load-
ings would have complicated rolling-up characteristics since each change
in sign of the slope of a loading distribution indicates the possibility
of a rolled-up vortex eventually appearing. At the wing-tip region the
loading gradient is very large, approaching infinity at the wing tip;
hence, the rolling-up is more pronounced at the tips. The loading gradi-

● ent in the wing region between two maximum values of loading in general
never becomes comparable to that at the tips, or even large. Hence, the

k rolling-up in this region will be very slow as compared to that at the
wing tips. Thus it can be assumed for these special loadings that only
the vortex sheet outboard of the maximum loading positions will roll up.

Then, when determining a rolling-up correction, the loading distri-
bution to be used will be that with a straight faired line connecting
the two maximum values of loading. The ordinates of the entire curve
are then proportionately reduced so that the area under the curve is
equal to the original unit area, as is illustrated below.

~Aqq

K
ROLL

Sketch (h)

The area under the new faired loading is made a unit
.

ing the loading distribution by l+&AqAKdq. The lift

“

area by dtvid-

coefficient
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used for the rolling-up method increases to-the value

C&oU=(l+~AKdq)C~ (40)

where the subscript, roll, indicates the value of lift coefficient and
loading used to comfite the rolling-up correction. .-.—

Effect of Fuselage

While a large part of the downwash at the tail is due to the wing,
the presence of a fuselage will alter the downwash to a sufficient degree
so that downwash due to the fuselage should be considered. For computa-
tional purposes, downwash due ta a fuselage-at the tail of an airplane.
can be separated into two parts: that due to the fuselage at an angle
of attack and that due to the fuselage at zero angle of attack. Two
effects are present for the fuselage at an angle of attack. The span
loading for the ying-body combination willbe somewhat different than
for the wing alone. This altered loading, together with the correspond-
ing distribution of %mage” vortices will affect the downwash in the
region of the tail. If the fuselage diameter is not too large, the load-
ing can often be approximatedby the wing-alone span loading. However,
in view of the pronounced effect of span loading upon the downwash, it
would be preferable to use the span loading corresponding to a wing-plus-
fuselage combi~tion. The other effect of the fuselage at angle of
attack is that resulting from the ~’crossflow!’component normal to the
axis of the fuselage in the region of the tail. The importance of these
effects depends largely on the ratio of fuselage diameter to wing span.
A further discussion is given in reference 10. At zero angle of attack,
there is a disturbance of the flow field due-to tapering of the fuselage.
The influence of the fuselage on the do~Wash is further complicated by
flow separation on the after portion of the fuselage, but this effect
will not be considered.

—

The relative importance of the above effects depends largely on the
particular configuration being investigatedmd the spanwise region of
interest. For the experimental data available for the present investiga- __ _
tion, a calculation of the influence of the fuselage at zero angle of
attack appeared adequate, —

Since the fuselage diameters of most airplanes are small compared
to the length, slender-body theory will.be used to approximate the flow _
near the fuselage. Equation (10) of reference 11 gives the complex
potential in the cross plane (normal to the longitudinal axis of the

-. *–

fuselage) of a slender body at an angle of attack. For a ‘bodyof
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revolution at
reduces to

zero angle of attack, the real part of this equation

90 =aolnr

where a. = Rf(dRf/dx). The radial velocity is then given by

The downward vertical

d~o Vr a.
—= —=— =
drVr

com~nent gives

*

where y

t
be noted
tapering

The

W-P-L -fif(dRf/dx) =
—=
v r2

and z are measured from the

r

the downwash.

-ZRf (dRf/dx)
(41)

y2 + Z2

center
that at the after part of the body
body and that the equations are for

line of the body. It should
dRf/dx is negative for a
bodies of revolution.

Effects of Compressibility

effect of compressibility on downwash is taken into account by
use of the FTandtl-Gla~ert rule. ‘That is, the longitudinal coordinates
are simply stretched by a factor ~/~ and Cl is replacedby 13c2.

The compressible and incompressible parameters are listed below.

Incompressible Compressible
(replace the incompressible values by:)

~cl~ ~cL> ‘r ~c~cl> CL> or C
La

A w
A AP = tan-l[(t~ A)/p]

Eor T f/P Or T/P

1

(42)

T 7

c c

c (chord) c/p
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The displacement values, ~~ or Zs, are not affected by 13 except *-
insofar as es is affectedly compressibility. This es can be calcu-

lated by making the above substitutions.
;

The T values in the ~s or Z&
equations are then not replaced%y T/p. The downwash for the case of $
sonic speeds is calculated by taking the limit as f3+0. The resulting
simplified downwash equations are given in the rear pn?tion of Appendix A.
The values of downwash when p = O are not here represented as the true
downwash but rather ..asa simple limit point that aids in fairing a Mach
number curve of downwash.

Computation Forms – —

It is expedient to sumnarize the present .calcu.lationsin a simple
computation form. The forms for the computation of downwash angle due

—

to a flat sheet, and the correction due to a rolling-up sheetj are pre- ..____ ,
sented as follows: ——

Flat-sheet procedure.- -—

Flat-eheetdownwaeh Vertkal displacement

T= ‘=
Cokennno. I 2 3 4 5 6 7 0 9 10

Uotumndefhltion Q au aga a,~ as4 ~ /cL AI A2 4?g ‘s/C’[SICL

Operationto From figwes3~4 for

be Wrformed ~n$knh ‘q” ‘q” @@ @+@ (r+qmnA)
given Aar,~,$l belowbelow

CL/tona

o
~0.5

For a=aTE and T meoeured from ~ j Al ~d ~a~e:

(T-B)(T-*) tan a
A2S-CL AlAl = CL (r+fi)

tana
For ct#~TE see equatkn(f8)

.

*
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m

i

Vertical interpolatii of flat-sheet downwash

II t2 13 14 15 16 17 18 B 20121 22

a, D1 Dz D3 D4 c1 C2 e/Q I Z/cL [ /cL

From Table ~
#~Kn

Constant

far given~ Wifhq &&]
@?~

o x x x x x x xxx
to.1
20.2 I
20.3
*Q5 Xxxx xxx x x (from @) ~ I
&O.8 I I I

Rolling-up correction procedure.-

Required information Trailing-sheet loss

CL==
CL=
a (radians)=_

(’
~-tan A z

For spon 100dings with

7’— 7.
%

Equation (39) Fc’ _ 124125126 27
a :: ara aT3 aT4 6T

[

F~l=— From figwe 5 far
‘CA $anFmKn

given q, t- tanA, JI tA “q
FSZ=_

Equatian (35)
F~3=_ 0.5

0.2
F~4= o +

maximums

-0.2 I x x x x x (same as 0.2)~

-0.5Ix x x x x (same as 0.5)~

I I 1 1 [
FSIKIFsEK~FSSKSFs4K4

q= O, see“8pecialLoodlngs”

Correct8d wrticul displacwwnt

I I I 1 1 1—. 1 1
0 I I I I

* Interpolated from figurs 6 for gh’sn
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Tip-vortex contribution Total downwash
3

fi :C Q:/q
7

M
30 39

~, &T
40 41 4? 43

Tatol
t?at dmmwa8h z

Q
@c, -

‘:a;A qa
* @~ @’@ @cL @+@ [@L-@

0.s
0.2
0

*2
-asi I

DISCUSSION

This section evaluates the prediction o~ downwash due to wings
alone, due to wing-fuselage combinations, and due to rolling-up of the
vortex sheet by comparison with experiment. Also, for a pair of plan
forms, downwash contours predicted by flat-sheet theory are compared
with the flat-sheet theory corrected for rolling-up effects.

Comparison With Experiment

Wing alone.- C!omparisonof estimations from flat-sheet theory with
some measured values of downwash from reference I-2for a swept-wing plan
form is given in figure 7. For this wing, the computed rolling-up cor-
rection was very small; hence, only the flat-sheet results are presented.
The computed values make use of the calculated wing loading distribution
obtained from reference 6 and also of the expertiental loading distribu-
tion,g which was somewhat different. The computed downwash distributions
due to both loadings are presented and the two span loadings are shown
in figure 8. The general conclusion is that the downwash prediction at
the plane of symnetry is critically dependent upon the local loading
distribution. This is because the downwash contributions of the vor-
ticity on either side of the plane of symmetry are additive for a sym-
metrical span loading. At outboard stations, the downwash is not so
dependent on the local loading since the vorticity to the tnboard side
results in an upwash which tends to cancel the downwash from the out-
board side. It is noted that at the outboard stations the experimental
and theoretical vorticity (or loading) distributions are more nearly
similar. The effects of loading distribution are most prominent at the
sheet. Figure 7 shows the experimental downwash from contour plots and
the downwash computed using the experimental span loading to be in good
agreement. The expetiental and computed locations of the wake center
are also shown to be in good agreement.

%%is “experimental” span loading was estimated from consideration
of experimental results of numerous wings.

—

:.

●

w

af-
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Wing plus fuselage.- In figure 9 q comparison of the computed down-
(wing-alone flat-sheet res’titsplus the fuselage “taper” correction)— —

and of experimental downwash is presented for a particular configuration.%
The wing is characterizedby an aspect ratio of 2.88, taper ratio of
0.625, and the quarter-chord line was swept back 50°. The wing was set
at 2° incidence relative to the fuselage which had a length of 3.02 wing
semispans and a maximum diameter of 0.297 wing semispans. The downwash
is given at 1.239 wing semispans behind the quarter chord of the 6.
The fuselage taper (dRf/dx) was about -0.2. In figure 9, it is shown
that the downwash due to this wing-fuselage combination is predicted with
reasonable accuracy by the results of the flat-sheet method plus the down-
wash due to the fuselage taper. At q = O, the computed and measured
downwash above the fuselage are in good agreement at the lower angles of
attack. Below the fuselage, the maximum difference is of the order of 1°.
The poorer agreement at a = 13° may be due (in part) to a change in span
loading from that which existed at the lower angles of attack.

At q = 0.383, the computed and measured downwash is in similar
agreement. At a =13°, the possible change in span loading results in
some discrepancy. However, as was pointed out in the comparisons of

9 wing-~one downwash, this change in span loading does not result in as
large a change in downwash at q = 0.383 as occurs at q = O. At
q = 0.383,the fuselage correction is quite small.

i
In summary, in figure 9 it is shown that good predictions can be

made by adding the downwash due to fuselage taper with the downwash due
to wing alone.

Rolling-up correction.- In figure 10 are presented measured values
of downwash from reference 13 together with three methods of prediction
for awing with A=60°, A= 3.5, A=O.25, and CL=0.5. The three
methods are: flat-sheet theory, rolling-up corrected flat-sheet theory,
and a completely rolled-up theory. The latter is simply the downwash
due to the swept bound portion plus two concentrated tip vortices located

at ~cm = 0.864. It is seen that the rolling-up method agrees well with
experiment and that the agreement is best at the more outboard and at
the more rearward positions. It is interesting to note that only the
rolling-up correction method agrees well with experiment. For ~ equal
to 2.71 and 3.43, neither the flat-sheet results nor the results for the
completely rolled-up vortex yield maximum downwash angles within 10 per-
cent of the experimental values. At ~ = 2.02 and q = 0.383, the experim-
ental downwash angles appear questionable because the rolling-up method
gave virtually exact agreement with experiment at CL = 0.25.

In applying the rolJing-up correction, it is important that the
lateral position of the tip vortices be closely approximated. In fig-

. ure 11 is presented a comparison of measured (refs. 12, 13, and 14) and
computed locations of the tip vortices. The computed locations of the
tip vortices are based on empirical equation (26). Figure U shows good

- agreement for a number of downstream positions for several swept wings.
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The agreement is within the precision of the experiments. It should be
noted that these are the same wings which were used in determining the
empirical constant, f, at one-half semispan behind the quarter chord of
the wing tip.

It is also important that the method yield a reasonable estimate of
the strength factor of the tip vortices. It is difficult to determine
the precise strength of the tip vortex from experiment because the vortex
sheet is connected to the tip vortex. An approximate check can be
obtained by determining the total vorticity in the region of the tip vor-
tex. The experimental total can then be compared to the theoretical
total. To check the totals for the 600 swept wing, the downwash contour
plots of reference 13 were used.

Very near the tip vortex (just outside of the maximum ~ values
where the sheet contributes little), the downwash due to the tip vortex
is approxi~tely given by

w ~ Gvortex

v-- fl(qc -?)

Let

Gvortex

p = (@@

values of P ranging from 0.57 to o*63 were ob~ined frorn the experi-
mental downwash contour plots for ~ = 3.43 and a = 12° by using various
T1’s.

The theoretical total is taken as the theoretical- Fc plus the
theoretical amount of vorticity left in the weakened flat sheet in the .-

region between q = (3qc-1)/2 and 1.0. At g = 3.43 and a = 12°, the
computed Fc is 0.k8 and the computed total-in the weakened sheet from
~=(3qc-1)/2 to I.o iS 0.136. This theoretical total of 0.616 is com-
patible with the experimental total and is considered a reasonably good
check on this @ase of the method.

Comparison of the Downwash Due to a Flat Sheet
and-That Due to a Rolling-Up Vortex Sheet

The foregoing has indicated that the ro~ing-up correction method m
gives am accurate picture of the downwash fields behind .s.weptwings: ~
is shown in
rolling-up.
results and

reference 4, CL and A are important parameters in the
Hence, it wouldbe of interest to compare the flat-sheet e
the rolling-up results for a f’ew..combinati.onsof CL and A.
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For this comparison the following wing-tail combinations were
selected.

I
Tail

location I

A = 2.0

A= 400

k 05.

Contoured downwash fields at
theory and by the rolling-up
figure 12 for two values of

A= 4.o

& 4(3o

X=005
Sketch (i)

the tail location as predictedby flat-sheet
corrected flat-sheet theory are shown in
CL, o.k and 0.6.

In figure 12(a) (A = 2.0), the rolling-up is prcnninentand three
principal effects are noteworthy: (1) in general, there is an upward
shift of the downwash field in the more outboard areas; (2) the magni-
tude of the downwash around q = O is reduced; (3) in the mid-semispan
region (around T = 0.5), the vertical distribution of downwash is more
uniform than for the flat sheet. In general, the maximum values of the
downwash for the two systems are not greatly different, but their loca-
tions do differ appreciably.

In figure 12(b) (A = 4.0), it is apparent that the amount of rolling-
UP present is quite small and the three effects mentioned a%ove are
scarcely discernible. In fact, these two cases, CL = 0.!!and 0.6, could

●

be considered as borderline cases. It is realized, of course, that near
the tips (viz, q = 0.9), the rolling-up may have a sizable effect. The
discussion here is limited to the more inboard locations as shown in the&
figure.
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For other wings with the sane CL, sweep, tail position, and taper E.
ratio, calculations indicate that for aspect ratios about one (or less),
the trailing-vortex system is, in effect, rolled-up into two tip vortices.
For aspect ratios larger than four, the rolling-up present is even less ●

than that present in figure 12(b). —

Thus, the general range of aspect ratios for which the rolling-up
correction should be computed is roughly bounded by A = 1.0 and A = 4.0
at CL = 0.6; that is,(3/2)C(A/CL)<6. —

—

CONCLUDING REMARKS —.—

Am influence-coefficient-typemethod is presented for the rapid
estimation-of the nonrolling-up downwash fields behind swept-wing air-
planes. Using similar techniques, an additive correction for the effects

—

of rolling-up is also presented. For the cases compsred, the downwashes ‘
predicted by the above procedures agreed weQ with experiment.

—

To facilitate computations, charts and graphs of pertinent functions
are presented together with tested computing forms. It is believed that ● ‘“
the procedures set forth will require less tb than procedures employ-
ing horseshoe vortices or discrete vortices. To obtain a simple and
rapid method, a numiherof approximations and assumptions were made. Each my

approximation and assumption was investigated by v@rious means and the
range of applicability is discussed. Some f~ndings of the present
research are as follows.

.——
,- —

By approximating the longitudinal variation of downwash behind
surface-loadedwings by a simple function, a very simple expression has
been derived for the vertical location of the wake center. It is shown
that the location of the wake can then be written as a linear function
of the dowiwash at the center of the wake. This downwash is easy to
determine and thus the wake location can be determined very rapidly. A
comparison of experimental wake locations and computed locations indi-
cates that satisfactory predictions are made.-

In the mid-wing region (around q = O), it is found that the com-
puted downwash near the wake is critically dependent upon the span load-
ing used in the calculations. Thus, one should obtain the best available
span loading before computing the.downwash at the tail.

—

The experimentally determined paths of the tip vortices trailing
behind several wings have been considered. It has been found that wing
sweep had an appreciable effect upon the mec~nics of the rolling-up
and slowed the inward motion of”the tip vortices to a considerable
extent. An empirical correction has been developed which allows one to

w

determine the tip vortex locations with due allowance for the effect of-
.—
.—

wing sweep. =.
●
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* Aside from an effect of the fuselage upon the wing span loading, it
appears that an important effect of the fuselage upon the downwash at
the tail can be considered as an additive correction to the wing-alone

● downwash for wing-fuselage combinations. mis effect (d~e to the ta~r-
ing of the rear portion of the fuselage) appears to be valid for combina-
tions wherein the diameter of the fuselage is fairly small compared to
both the length of the fuselage and the span of the wing. The correction
(obtainedby slender-body theory) is expressed ina simple form and has
been shown to be in goad agreement with experimental results on one air-
plane model.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics

Moffett Field, Calif., Sept. 16, 1954

.
.
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APPENDIX A < .

INTEGRATION OF EQUATION (3) TO OETAIN EWNWASH *

A general equation for the flat-sheet downwash is presented in the
section “ANALYSIS AND DEVELOPMENT OF METHOD.” The purpase of the present
section is to reduce the downwash integrals of equation (3) to the form
of equation.(6). It will be shown in the later part of this section that
in the special case of sonic speeds, the downwash integrals simplify con-
siderably. The downwash due to a completely Yol.led-upvortex system can
be considered as a special case of the flat sheet; nsmely, that of a

.

wing with rectangular span loading. Thus, the first portion of Appendix A
is concerned with the general flat-sheet system, whereas the second por-
tion considers specific cases.

General Solution

Representing the arbitrary loading distribution by a series and .
replacing the lateral integration variable by a trigonometric variable
allows the first integral of equation (3) to be evaluated analytically.
However, the second integral of equation (3) can only be evaluated num@ri- #

tally and may be evaluated in the same marine-ras that of reference 6.
The first portion of the following willbe concerned with the analytical
integration of the first integral of equation (3).

It can be shown that G~(9) can be represented as

u
n=l Uy=l

Then, the first integral becomes

1

J

m (COS~ - ~)G’(q)dc#

;
o

Q2 + (Cos (p- q)z

where

= L 2bsn %
n=1

.

(Al)
—.

(M)

—

(A3) ●
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Equation (A2) gives the integration to the same degree of accuracy as
the vorticity distribution is givenby the series of equation (Al.). It
remains to evaluate the integral of equation (A3). Define

where

With the

equation

Now JV
nator o*

JP1=

relation for odd VI

p=-1
Cos &cp = 2 .OS”’CP-= “J ccm(.~2z)P

I Z!(il=-z)!
1=1

(Ak) canbe writtenas a recursion formula. ~us

(A4)

(M)

(A6)

can be expressed in a recursion formula, by dividing the denomi-
the integrand into the numerator, then

()cnr for pl = even
11=-2 ‘

2

where ncr are binomial

and

coefficients where

n= Jl=-2

jl=-2
r =—

2

(A7)
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The integrations represented by Jo and JI are found as follows:

v 1-U2
Let u=tan Z then cos~=— _ 2du .

1+U2‘ ‘q
With these substitutions,

l+UP
equation (A6) for Ml = O takes the form

p

00
d(u=)

m
~d(u2)

Jo=+ +

t??+(q)(u=)+(r)(U2)2]~~ fo 0 W(q)(u2)+(r)(u2)2 1
These definite
for Jo as

where

integrals are tabulated in reference 15 and give the value

r =Q2+ (1+7)2

A similar procedure gives
J

(A8)

(Ag)

where the p’s and q’s and r’s are the ssme-as those in equation (A8).

With tabulated values of Jkl (from eqs. (AT) through (A9)), the
application of the recursion formula of equation (A5) evaluates the
desired integral of equation (A4). For symnetric loading, values of

IV1 for odd V1 are given in the following equations”:

—

—

-.

.

,.
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I - (Q=+ ~2)Jo + TJ=

- (1- 472+4Q2) - (q2+Q2) (-3+472 - 4Q2)J0

[I -12T12+ 16q4 + (w -96q2)Q2 + 16Q41 -

(r12+n2) [5 -20qa + 16q4+ (20 -j%r12)Q2+ 1+ q(-3+4q2-12Q2)J=

16$24]JO +

rI[5-20q2 + 1674+ (60- Moq2)Q2 + 8ofi41 J1

[-1 + 2472 - 8oq4+ 64qe-(24-480q2 + 96q4)Q2 +

I

(no)

(-80 + 960r12)Q4- 64s2s1- (72+Q2) [-7+5672 - l12q4 +

64T6-(56-672V2 + g60q4)Q2+ (-IU + 960~2)Q4 - 64Q8]J0 +

q[-7+56q2 - XL!2q4+ 64v6 - (M8 - U2072 + 1344q4)Q2 +

( -560 + 2240q2)Q4 - 448@] J=

J

For numerically evaluating IV= for high Vl, it may be simpler to

use equation (A5) direct3y; that is, to tabulate numerical values of Jwl
from equation (A7),then tith a numerical value of 11 to tabulate suc-
cessive Ivl.

With Ipl defined, equation (A3) becomes

m

1bsn =—
I

P1 sin WIPnIwl (All)
m+l

The coefficients
of the integrals
loading, ~, and
the downwash due

l)5n can be found for ~bitr~ Q and ~. The value
of equation (A2) is the sunnnationof the arbitrary
the bsn values. The integral of equation (A2) gives
to a continuous trailing vortex sheet at an infinite

distance aft of any wing and also twice the downwash at the load line
for unswept wings. For the case of elI1.ipticloading, the downwash is
given directlyby 11 alone,-a-resultderivedby other procedures in
the past (e.g., see ref. 7). For symmetric loading (Gm+=-n = Gn> and
only-odd i=)j equation (A2) bec~es

~

f

n (COS ~ -q)G’ (q)dq
m

o Q2+(COS ql-~)=

m+1
2

= L 2B5nGn (AK?)

n=l
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where with W1 odd

NACA TN 3346

B~n = 2bsnj ny~

!

(A13)

= bsn) ..=*

The numerical integration of the second integral of equation (3) is
obtained from the appendix of reference 6 by substituting LsP given by
equations (k) and (5) for L(q,~) in reference 6.

In -MW.YY for
tion (3) becomes

where

symmetric loading, the downwash integral of equa-

(A14)

u

1-1 ;
asn =2Bsn+— ?~as~

2(M+1)
p=o

B~n
B m+l = — for n = ‘~
S,T 2

and 1~1 is givenby equations (AIO) and (A5)

fnjt

‘T’

n m+l
‘T’.

j.l>o

n+y) P=o

n m+l
‘T’ ‘=

o

.,

—

—
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‘np for several values of

fl~+(q.-~ )2 ‘ f12+T2 COS2 A
AL~p =

~[’+ (V-fipbUIA]2+ (@Iu)2+02

(v+fiV)[T+(9-6U)~~Al (’r+gq tan A)(v -fiP+’rsinA cosA - 2TICOS2A)

nz+(q+fiv)z - $_12+ (T+2TItan A)2 COS2A

~[T+ (~-fi&nA]2+ (TI+iv)2+R2

T(q+T Sill ACOS A)+ (T+2?l tan A)(~+Tsin Aces A-2qcos2A)

f12+-~2cos2A i22+(T+ 211 tan A)2cos2A V - fjl n+m~

(T + ~ tan A)2+q2+Q2
n2 + (rl-lju)=+ Q2 + (~+ijp)z

where
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A convenient closed form of fnp is given by:

-2(-l)n sin Qn
‘n~ =

(m+l)(COS an -Cos @w)*

HACA TN 3346

*.

.

[ sin 9P sin (m+l)TV(2+ cos an +COS mu) -

for

(m+ 1) cos 9W cos (m+1) 9H (cos 29n - cos 29V)I

.1 —

-1 .
‘w “=2 sin an —

for

M=m

qq)n+~ sin CpnCOS 9P -
fn~ =

COS 2Qn - Cos 29P

Special Cases —

Compressibility considerations and dowash at sonic speeds.- The —

effects of compressibility subject to the limitations of the linearized
compressible flow”equation, can be included in the previous work by th~” “’”“-T --—

substitution of the parameters &
B and ‘Ftan-’(*)~ ‘or g and A)

respectively. It.can be seen that since the Bsn ‘co~ff~cientsare inde-
pendent of ~ and & they are waffected by compressibility and that only

.-

the LSV. function is affectedly compressibility.
.-

The -limitvalue of the downwash at son~c speeds can be found%y sub-
stituting into equations (3), (4), and (5) the Parameters’

.
T/~ and AP

which replace T ap.d+, respectively, then_determining the limit as ~+0.
With the limit



.
equation (3) at sonic speeds becomes

[’r+ (lql-q)tan A]tan A

[T + (II-II-q)tan A1’+il’ tan2A

1

q

T+lq\ tan A T + (\TI1-lijl)tanA

1G~(ij) dij +

o 17+lvl~Al ‘lT+(lvl-lfil)~Al

[T + (lvl+q)tan A]tan A 0 T+lqltanA

Q

T + (lql-lfi\)tan A

11G1(ij) dij
[T+ (lvl+q)tan A]2+f12tan2A -1 IT+lql tanAl - IT+ (101-l~l)tanAl

(IU6)

The form of

downuash. These

equation (A16) can be simplifiedby consideringthree longitudinal
regions can be pictured as followe:

u G

Region J
A

Sweptback “
Wing

Swept forword

wing
Sketch (j)

regions of
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For the three regions, equation (~6) gives

Region I:

v-=
v

o

Region II (for sweepback):

~[T + (Iql-q)tan A)tan A G
(1

T+l~ltan A

tan A 1)
+

[T+ (171 -q)tan A]2+Q2”tin2A

*

.-
.

$

(1

T+ lq~tan”A
~[T+ (lVl+T)tan A]tan A G -

tan A )

‘1

(A17)
[T+(lql +~)tan A]2 + f12tan2A

J
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Region II (for sweepforward):

w I, pkfl ,-, ~,,,,d,+--
–’ixv

-1 $22+ (~-~)z

L

T -fi G’ (ij)dij +‘k-lT+ qtan A ~2 + (~-6)2

tan A

(2[T + (l’ql-~)tanA]tan A G IT-
1)

[T+ (1~1-~)tanA]2+Q2 tan2A

(12[T + (lql+q)tan A]tan A G - ~
tan A 1) ]

[T+ (ITII +q)tan A]* + 02 ‘@n2A

I

Region 111:

47

(u8)

The symbol G~lTel) denotes the value of G at that
span station.
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For symmetric loading, Region II given by equation (~6) simplifies
(since G(-~)=G(rI)) to:

Region II (for sweepback):

1

I

~+qtanA

w 1

J

tan A I v—=— -h
Vfl

G’(fi)d~+

lT+q’tanAl ~2+ (q-fi)2

tan A
[

T T+27tah A
+ 1

~2 + f12tan2A

G
(1

T+ TtanA

tan A 1)}

(T”+27 tan A)2+02tan2A~

(A19)

Region II (for sweepforward):
J

tan A
[

T T+ 2q tan A

T= + $22tan2A + (T + 2? tan A)’ + f12tan2A11
(1

T+7 tan A
G

tan A 1)/

.

(A20)
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=
For the Region II for the case of sweptbaek wings, the downwash can be
written as (symmetric loading)

-1-r-tqtan Al

1- tan A I

tan A

[

T T+2~tanA
n ~2 + Q2 tan2A + (T + 27 tan A)2 + Q2 tan2A 1

[(G
‘r+qtan ii

tan A 1)1
(A21)

1- J

The two integrals can be approximated by replacing the loading distribu-
tion near the wing tip by a single vortex having strength given by

G
(1 “

T+ tan A

1)
and laterally located so that the downwash at v=Q=O

tan A
due to elliptic loading at the wing tip equals that of a single vortex.
Then the lateral location of a single vortex is at

a .j~) (A2,,fi=

( )

tan A
Cos

-= T+~ tan A

tan A
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Then the downwash becomes

I—a2

G (1T+q “tanA

)
-1-

tan A

NACA TN 3346

+

w

tan A

[

T 7+2~tanA

1 (1

T+q tan’A

T2 + ~’ tan2A + (T + 2q tan A)2 + Q2 tan2A
G

n tan A 1) *

(A23)

The downwash .inRegi~ III can be evalqated from equation (AI-2),
then

(;),,,=: asn’n
n=l

For symmetric loading

(A24)

,

where the value
equation (A14).

m+l . —

(:)111 ‘s 2’S*G’
(A25)

n=l —

of 2Bsn is the value Of ~sn at T = @ given by ..

Downwash due to rectangular span loading.- For rectangular span load-
ing the equations for determining downwash simplify considerably. Since
the loading is constant across the wing span, then in ecpations (3), (h),

and (5) one can substitute -~G’ (fi)dt= G(o), and plus and minus values

—
.
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of unity for I. The downwash equation becomes

1

[
T ‘rta A-

(1 - 11~

(1-q) [T-(1 -q)tan A] - COS2A 1

w/v 1 1-V + 1+11 + n= + (l-q)*—. . ‘iZ+Q2jcoszA

km Oz+(l-q)= F+(l+q)z
+

2G(0) ~[~-(l-q)tan A]2+ (1-v)2+Q2

(1+;)[T-(l+tan A] ~(7+27tan A)[T tan A -2q - (1-q) /cos2A]

n=+ (l+q)z (T+2TI t-snA)2+Q2/cos2A
+

~[T-(l-q)tan A]2+ (l+q)2+ $12

T(T tan A + q/COS2A) , (T+2~’tan A)(Tti A-2W.q/cos2A)

T2+ fi2/COB2A (T+2q tan A)2+f12/cos2A

~(T+~tSn A)2+~2+f12

For Q = O equation (A26) simplifies to

Wb

[

1 ~+l+J [T- (1-v)tan A]2+ (1-q) 2+~[T - (1-q)tiA]2+(l+q)2+
—. —

2G(0) km l-q 1+11 T(l-ll) (T+2TItw Ji)(l+v)

2 tanA~(T+q tan A)2 + q2
I

(A&5)

(A27)

U&
T(T +2?I tan A) J
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Compressibility is taken into account i.n_the same manner as in the
previous section. At sonic speeds for the s.~e regions atibefore, equa- ““ ‘-

F

tion (A26) reduces to
——

.

Region I:

d!L=~
2G(0)

Region II (for

W/v— =
2G(0)

Region II (for

sweepback):

tan A

[

T

2fi T2 + Qztan2A

sweepforward):

T+’27 tan A

+ (T + 2T tan A)2 + Q2tan2A 1

w/v 1 -( 1 -v l+q +tanil
[

T—= .
‘fp + (l+q)z2G(0) 2TI 02 -1-(1-T)2 T’ + Q2tan2A

7+2~tanA

(T + 2q tan A)2 + Q2tan2A 1}
Region 111:

w/v 1

[

1 - T) + 1+?.—

2G(0) 2X Q2 + (1-~)z f12+ (1+7)2 1

(A28)

+

(A29)

(A30)

—

If the trailing vortices due to rectangular loading are not at the
wing tip (q = 1) but laterally located at qc, then the downwash is

—

obtained hy substituting G(o) ‘r
~, and-& for G(o), T, ~, and n,

~c ‘ c l-lc
respectively, in the previous equations. .- —

J

.
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APPENDIX B

VERTICAL INTERPOLATION OF lXIWNWASH

An approximate vertical interpolation of downwash can he found %y
using the method of reference 8 for small values of Q. In the present
report, the interpolation formula for other values of Q will be based
on a fitted function of Q that fairs through the two known values of
downwash (Q = O andtO.5), approaches the function given by reference 8
for small values of Q, and approaches the correct function for high
values of Q (e.g., ref. 7).

In reference 8 the downwash function is
starting from the vortex sheet:

where the subscript, o, indicates evaluation

expanded in a Taylor series

f12+ . . . (Bl)

atQ=O. Assuming the
trailing sheet extends fore and aft to infinity, the following relations
are derived in reference 8:

(B2)

Now, for large values of Sl,if T is small relative to ~, the
downwash for amy loading distribution is given by

As !2 becomes very large (compared to q), equation (B3) becomes

1 CL
E(Q) =——

2$22TrA

The derivative of equation (Bh) gives

(B3)

(B4)

—

de 1 CL—=_--z
m (B5)

It is desired to curve-fit a function of Q that approaches equa-
tion (Bl) for small 0, gives the known value of E at Q = +0.5, and
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approaches equations (B3)~ (B4)~ and (B5) for large Q. Assume the
folloting function:

+C(js’j++q+
“

A@’’+A3(&)+-f(/!$ ‘B6)

rf
Where the variable — is chosen since do@wash canbe shown (by

1+-F
using eq. (@O)) to be propo~ional to this parameter.for elliptic load-
ing at q = O.

The coefficients Cl* and C2* are evaluSted by taking the first
and second derivatives with respect to Q of.equation (B6), which, at
Q= O, give the values of equation (B2), that is, *

d%”* ~#G
“cl*=— C2 =-–—

dq2‘ 2 dq2
(B7)

● “

The four remaining coefficients of equation (B6) can be found hy
using four conditions which the equation must satisfy. One condition is
that it pass through the known value”of e at Sl= 1/2. Another is=that
it pass through the value of e at 0 = 2.o givenby equation (B3). A
third condition is that at very large values of Q, the downwash must be
the value given by equation (B4). A fourth condition is that the slope
of the curve at very large Q be that given by equation (B5). The four
coefficients (Al,

()

El d% d2e
z ‘pp

CL
tives and ~.

Now

A

A2, As, and A4) so determined ti-llbe in terms of Go,

CL
and —. The next step is to evaluate the two deriva-

nA

To find &:
d~2

d%(~)

()

.dG(@ d%+ d%(q) dq 2
(M)

dq2 dq ~ d@ ~

‘It should be noted that at two semispans frm the sheet the down-
wash is essentially independent of span loading (e.g., ref. 7, p. 165);
however, the downwash still has enough magnituti to make it useful in the
curve fittiw.

.
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b where

(p = CoS-l 11

(Bg)

Then

The derivatives of .G(q)are obtained from equation (Al). Then equa-
tion (B8) becomes

m“
d~(9) . -

I
2VnGn

dq2
n=l

where

.

(-1) ‘-vsin qn[2 sin2~V+ (cOs 9n ;=0s Pv)cos(pvl, n + ~

sinwv(cos qn -Cos qv)=

[

m(m+2)sin29v-3 c062Qv

3 sin4cpv

For symmetric loading,

m+~
T

d~(~) . -
dq2 z

tvn~

(Bll)

(B12)

Y~=v

(B13)

n=l
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where
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I
l~n + ‘Vm+l.n)

m+ln+~
h. =

h. n
m+l

J = —,
2

For m = 7, the ~n values are given as foI1.ows:...

Ivn

(B14)

.

n O.*3 o ● 707 0.924

1 -1.7934 3.5149 -26.5029 100.7692
2 3.6568 -16.5757 40.0000 -19.1087
3 -25.2346 27.2308 -19.6374 -20.4839
4 21.0000 -13.5139 2.8284 U. 7199 ●

●

With d%/d~2 evaluated, the next step is to evaluate d2s/dq2.
The downwash of the two-dimensionaltrailing vortex sheet is givenby
equation (A2).
(e.g., ref. 6,

For S2’0, equations
eq. (A19))

(A2) and (A3) simplify

Then similar to equation (B1O)

and become

(B15)

(B16)

The derivatives occurring in equation (B16) are obtained by differ-
entiating equation (B15); then after summing up several resuiting
summations, equation (B16) becomes

d=Ev m

—=
I

EVnGn
dq2

n.1

.

(B17)

.
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where

EVn = m+l [15 - (m2 + 2m + 12) sin2qVl
n=v 4 sin5~

.

-3 sin ~n
Evn =
n#v (m+l)sin’q!(c!os~-cos TV)

(m+l)2(-l)n-V cos ~
+

sin2~

(m-El)2( -lp’ 2 [1-(-l)n*] sin2~v
+

C06 qln-CclsTV (Cos q)n- Cos cpv)~

For symmetric loading

n=l

where

For m =

The lift

7, the ~n values are given as follows

q)n

n o 0.383 0.707 0.924

1 19.945 -48.262 241.673 1174.743
2 -67.883 1.28.4yJ -237.586 -1791.706
3 173.641 -174.776 81.739 ~$: “;;;
4 -120.000 89. XL2 o .

coefficient can also be given as a summation of Gn.

(B18)

(B19)

(B20)
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In+1

‘(J=
2Yt sin Cpn

>
CL 2

I

m+l
—=
A

n=l J
m+l

~+~

)Gn

n m+l=— *.

For m = 7, the factors Of Gn in eq~tion (B21)

1
n 1 2 3 4

factor 0.3006 0.3554 0.7256 0.3927

(B21)

are as follows:

As mentioned before, the coefficients ot equation (B6) (AUA2, As,

h
and A4) are in terms of’G(O), e 1/2), d%/d~2, d2e/d~2, and CL/nA. It
has just been seen that d%/d’q , d2e/dq2j and CL/YCA canbe expressed

●

in terms of summations with Gn. Thus, equation (B6) can be written in
terms of ~’, c(O), E(l/2), and summations of fi. The equation “ ● -
can now be algebraically rewritten into the form

m+1

c(n) = c= G(o) + C!2.E($)+: DnGn (B22)

where the constants cl) C2>
the integration coefficients

X =.~’, the constants

n.1

and ~ contain the ~- terms and
of d2G/d~2, d%/dq2, and CL/A. Letting

are:

(B23)

C2 = y (5 +3%6)X3+ & (35.t17m)x4+25 (;+’2~x’ -& (15+ 5fi)x”

(B24)
.
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( 7+6fix4 + W3fix5 - ~xe E1 2 4+3fix3 —._-=x+—
4 4 4 4 )

Vn +

[
- ~ (20+9~5) X3 + ~ (85+38fi) X4 - ~ (lm+49fi) x’ +

16

2 sin Qn n + m+l

1 }[

*1 ‘ T
: (9+4f5) x“ (k-~’~

(4+q2)
1

n m+l
Y =—

m+l 2 )

(B25)

For m = 7, values of Cl, C!2,and Dn are presented in table II for
various values of Sk.

.—
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APPENDIX C

DEVELOPMENT OF EQUATIONS PERTAINING

THE ROLLING-UP CORRECTION

Em --

This appendix includes the downwash due to a flat trailing sheet
alone, downwash due to a pair of trailing wing-tip vortices, and a
reduction to more convenient form of the
ence 4.

DownWash Due to a Flat Trailing
From the Quarter Chord of the

%olling-up distance” of refer-

Vortex Sheet Extending
Wing Tip to Infinity

The downwash can be obtained from equation (1) by setting

x - (b/2) tan A
COB e, = (cl)

J(x-

In dimensionless coordinates,

w 1

f

L (r@j)G’(fi)dfi-
-=—
Vfi -1 Q*+ (~-fi)a

)
2

~tanA + (Y-F)2 + (Z-ZS)2

the downwash becomes

The first integral is integrated analytically in Appendix A, and is given
by equation (A12).

The numerical integration of the second integral can be performed
by following the procedure of Appendix A. Let

—

(C3) .

.
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( )then the second integral.of equation (C2) becomes ~ = cos ~p = cos ~

where

(Ck)

(C5)

where ~nv values are given under equation (A14).

For the case of q = o = O, the second integral of equation (C2)
can be handled in much the seinefashion as equation (A2) and with the
same limitations. The vorticity distribution is givenby equation (Al)
which for symmetrical loadings becomes

*

.

m-~

2
T

%

n=l

With equation (c6), the

1

second integral can be written as

m
t)
+1 n

z
jl=(-l)

J 1%CHco’WITdfP+
Ll=l,odd

o

(c6)

Y‘+% ;=,odfl‘in“l’nf- “1’d’]“’)
n=z =
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Now, for Q=q=O

St

L J’ [’‘ill E- tan A
LTV cos ylq dq = — .

0 ~ Cos q (~-tan A)2 -+ cos2q
1

() f-(~-tan A) m
Cos ~=cpdq

=Ycsinwl;

o !-tan A)2+cos2Cp

(c8)

The integral remaining in equation (c8) can be written asl

J’
3’( lK/2

CCYSp=qJdql
= 2k

J

Cos K=g d~

Cos q h/-
(C9)

0 (~-tanA)2 + COS2V o

where

.
k=

L

~1+ (g-tanA)=

This integral is evaluated by a recursion method.

For odd values of VI

~enceJ

~1-1

2
LLliWS (kll-2WPCos l.L=q ~1-1 pi-l

=2 Cos 9-
Cos q I I!(pl-z)! Cos(p

1=1 —

—

“

—

(Clo)

(Cll)

.

l~e in~=ation of eq~tio~ (C9) ws obtained With the aid of

reference 16.
—

n
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where

63

\ if/2 .

‘(+) = J; ;-,

For I-L== 1 and VI = 3, equation (C13) integrates directly to

D=
‘o =— =K

2k

where K and E are
kind, respectively.
recursion formula:

from
.

D= =

D3 =

D= =

D7 =

1

Rl =+ [E-

complete elliptic
Higher terms of

F

(C12)

(C13)

(1-k2)K] (C14)

integrals of the first and second

()
R %-1

can now be obtained from the

T

With values of R ~ -1{~, determined, the values of

\2)
the recursion formula of equation (Cll). Then

- :[(4 - kz)K-4E]

*[(32 - 20k2 + 3k4)K - 4(8 - k2)E]
>n

- -&[(5U - 608k2 +

where k follows equation

%= are obtained

216k4 - 15k8)K - (5L2 - 352k2 + 72k4)E1 I
J

(C9) .

1(c16) ,
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.

Thus the second
in s~~ is given

integral is evaluated exactly for Q = q = O and,
by

7(

m

m-1

Y( I

-2 m
Gn _

[

~=sin pf~ fisin Pl~

1]
- (~-tan A)DV1 (C17)

(m+l)fl
n=l Pl=l,odd

where the Dwl values are given by equation (c16) and for higher values

of PI by the recursion formula of equation (Cll).

Similar to the work of Appendix A the doynwash, given by equa-
tion (C3), canbe expressed as the sum of the-products of influence
coefficients and values of the loading distribution, or

where

m+l

w—=
2

%Gn (c18)
v

n.1

M-1
7

= 2B~n +
-1

aTn
I

%@%l
2(M+1)

p=o

The coefficient, Bsn} follows equation’(A14). Similarly, ~nv also

.

.

.
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follows equation (A14)

‘+ E -tan A
MjL= ‘-” 1-

!22+ (MJ2
1(~-tanA)2 + (V-TIV)2 + 02 -

For ~ = Q = O, the analytical integration which evaluates am

P

.

where

1
m

2( E-tan A)

I
PIDV=sin Vl%

(m+l)3t
Bsn +

pl=odd

p=-l
&tanA m

z

Y

(m+l)Yc
VIDV=(-l) Y

~==odd

values are given in equation (c16).

m-l-l
n+~

n
m+l=—

2

is

(C19)

Downwash Due to Two Trailing Vortices

Let the lateral position of the two vortices %e at t = *TC mere
TIc is the fraction of wing semispan from mid-wing to the center of the
wing tip vortex. The downwash equation is obtainedby substituting

-f
G’(~)dij=G(0)

@lus and minus values of 7C ‘for ij,and qcb for b in equation
Then

, %?[.;.;.,,2[:

5 -tan A
.=—

1

+
/(E-tan A)2 + (qc-q)2 + Q2

(C3) ●

(C20)
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Now, “qc can be absorbed into coordinate parameters, then
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(C21)

Roll-Up Distance, EC - go

.

.

.,

.

The longitudinal distance at which the vortex sheet is essentially
rolled-up is a function of wing loading, lift coefficient, aspect ratio,
and sweep. The roll-up distance given in reference 4 is given by (when
the coordinates are changed to the present notation),

5.05(1 - ncm)s’2
Ec-!o=

lim G(q)

-0 ~

(C22)

where go represents the start of the rolling-up process.

A simple numerical method for evaluating the denominator of equa-
tion (C!22)is as follows. The loading distribution is given by the
series

(c23)

.
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With equation (C23), the denominator of equation (C22) becomes

(c24)

For symmetric loading for which Gn = Gn+=-n and PI is only odds
equation (c24) becomes

m

The summation,
I

w= sin Vl~nj in equation (C25) can be evaluated as

follows:
Ul=l

let
iqn

Z.e = cos Cpn + 1 sin Pn

then,

[1
m

d
I

v=
z

m

z

~=odd = -(m+l)(-l)n
WI ‘in ~1% = ‘gi~ z dz

(c26)
part of 2 sin%

y==odd
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Wtth equation (c26), equation (c25) becomes

m-l

G(9) 2 (-l)nGn

&hoJm= - I~G m+l - 2JZ —

() T sin ~n
n=l

Equation (C27) inserted into equation (C22) gives

For m = 7 equation (c28) simplifies to the following:

(1 - 7t%)”/2
EC-EO=

1.4630 Gl - 0.7917 G2+ 0,6060 G~ - 0.2799 G4

“

(C27)

( C28)

. .—

.

0.7315 K1 - 0.3959K2 + 0.3030K3 - 0.1400 IQ

where the subscripts pertain to span stations. n =.1, 2, 3, and.4; or.-
~’=cosy= 0.9239, 0.7071, 0.3827, and 0, respectively.
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TABLE I.- LATERAL INTERPOLATION FACTORS

H1 0.0030
E= -.0178

H= ● 1086

H4 .9061

H1+H2 -.0148

●

i I I I
0.195 ]0.290{ 0.556 10.8311 0.981

0.0089 0.0102 -0.0449 0.3378 L 6982
-.0538 -.0645 .4365 .9777 -1.3604

.3916 .7361

I

.8790 -.5861 1.3155

.6533 .3182 -.2706 .2706 -.6533

-.0449 ..0543 .3916 --- ---

‘=$5$=

TABLE II.- VERTICAL INTERPOLATION FACTORS

*0.1 *0.2 *0.3 *0.8

For all q n Dru q = 0.707

al 0.9611 0.7819 0.5005 -0.1947 1T 1.5928 1.7007 1.1502 -o ● 4075
7
*2 .0522 .zT84 .59% .9978 2 -2.7584 -3.2636 -2.3921 1.0580

n Dn, q=O 3 1.4504 1.7888 1.3447 -.6115
— 4 -.2506 -.3236 -.@6 .1384

1 .0973 .0932 .0559 -.0029
n Dnj TI = 0.924

2 - ● 2957 -.2788 -.1699 .0591 ‘

3 1.6725 1.9224 1.3752 -.5490 1 -11.8776 -17 .8a14 -15.0373 8.4886

4 -1.4618 -1.7412 -I .2816 .5816 2 6.6138 11.9406 10.8359 -6.7796

n Dn) 11= 0.383
3 -3 ●5043 -7.9690 -7.7815 5.3097

~ 4 1.5814 3.7283 3.6751 -2.5254

1 -.1667 -.1392 -.0734 .0125 T
2 1.0587 1.1846 .8303 -.3137

3 -1.8423 -2.15b -I. 5653 .6952

4 .9066 I. 0512 .7570 , - ● 8976
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TABLE III.- ~nv, FOR SEVERAL VALUES OF m AND M .

I u(for m = 7)

=--P
o

I
o.

--- I ---

---
I 1

---

I

---
1 2

--- I ---
---

I
3

--- ---
2

I 4
--- I ---
---

I 5
--- I ---

3 6
--- ---
---

I 7
--- I ---

~ n=l

0 5.1258
1 -2.6131
2 -3.3258
; 1.1989

- ●5973
.3318

z -.1831
7 .0824

n.z

-2.613~
6.9258

-1.4142
-3.9231
1.5307
- p:

-.1831

M=31

7
8
9

10
11
12
13
14
15

n. 3

1.800
-4.0273
6.3285

-1.0824
-4.1062
1.6131
- ~;:;

n= 1

2.6131
4.5889
2.8844

.6573
-1.4142
-2.7625
-3.1207
-2.5843
-1.5307

-.4383
.3.114
.5651
.4142
.1016

-.1258
-.1444

,.

n= 2””

-1.4142
-2.1053
-.2363
2.0046
3.6955
4.1506
3.1958
1.2224

-1.0000
-2.6609
-3.2ti5
-2.7288
-1.5307
-.2939

.4372

.4635

n.s

1.0824
1.5663

.0751
-1.5k02
-2.4142
-2.0037
-.3621
1.8601
3.6955
4.2950
3.3216
1.1207

-1.4142
-3.2260
-3 ●5579
-2.2904

n= 4

-0.5000
-.7193
-.0253
.7109

1.0824
.8553
.lcx)5

-.8209
-1.4142
-1.2844
-.3367
1.1492
2.6131
3.4397
3.2212
1.9416

m= M = 15 I

n=4 n=5 n=6 n=7 n=8

-I..4142 1.2027 -1.0824 1 ● 0196 -0.5000
3.0027 -2.4966 2.2223 -2.0824 1.0196

-3.6955 2.8196 -2.4142 2.2223 -1.0824
6.1454 -3.6~31 2.8196 -2.4966 1,2027

-1.0000 6.1454 -3.6955 3.0027 -1.41.42
-4.1062 -1.0824: 6.3285 -4.0273 1.8000
1,5307 -3.9231 -1.4142 6.9258 -2.6131
-“5973 1.1989 -3.3258 -2.6131 5.1258

T

.
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.

TroJing sheet ~
boo’ vortex at wthg

quarfer - chord A%e

c ,

Lxor[~

Rbn view

‘“ cz or
t- ——..___—— t

9* view

G20rohates of fluf-sheef vortex system

&

I

mm%wtes

Figure

SectIon A - A‘

of reo/ vorfex system ‘=345=

l.- Illustration of coordinates.
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symbo/

——. .
------ .-

method

one lifting line

three /ifting lines

five lifting lines

r-”

7=.924

.3

cotangent - type chord Ioadlhg

uniform chord loading

i

r- TTE , s6rnispans

distance behind wing trailing edge

=5=

(a) 1 = 1.0

Figure 2.- Comparison of the downwash field due to a lifting line with
that due to a lifting surface composed of several lifting lines.
(A=2.0, A=%,O=O)

.

.

.

●

.

—
L-
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———

------ -

cotangent- type chord boding

uniform chord loading

method

one /Lfti~ LIhe

three lifting lines

five lifting fines

15“
vi

/.4 ~
1

I*3 - ::
b

10

a

.7 ‘

.6

.5

.4
I I

“30 .2 .4 .6 .8 10 E 14 16 M

r- TTE 8 semispans

distunce behind wing truilfi?g edge

(b)l=o

Figure 2.- Concluded.

.
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Fi@re 3.- Downwash influence coefficient, ~n, due to total. flat-sheet vortex system; T/p afb
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Figure 4.- Downwash influence coefficient, aBnj due to total flat-sheet vortex system; T/p tit
of c/4, QB = 0.5.
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